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Abstract
We present results of a theoretical study of the magnetorheological viscosity η of a suspension
versus the applied magnetic field H and shear rate γ̇ . It is supposed that the macroscopic
rheological effects are provided by linear chain-like aggregates. Unlike in traditional models,
the natural statistical distribution of the chains over the number of particles in them is taken into
account. The results obtained explain important features of the rheological η versus H, γ̇ law,
which has been detected in experiments but qualitatively contradicts known theories of
rheological properties of magnetic suspensions.

1. Introduction

Many experiments (see, for example, [1–5]) with magnetic
suspensions demonstrate the following rheological power law:
η/η0 = 1 + ϕMn−�, where η and η0 are the effective
viscosities of the suspension and carrier liquid respectively,
ϕ is the volume concentration of the particles, Mn ∼ γ̇ /H 2

is the dimensionless Mason number, equal to the ratio of the
hydrodynamical force, destroying links between particles, to
the force of magnetic attraction between them, � is some
exponent, γ̇ and H are, as usual, the shear rate and magnetic
field. There are two kinds of theoretical derivations of this
power law. The first approach, presented in [1–3, 6], is based
on a model of linear chain-like aggregates, consisting of the
magnetic particles. All chains are supposed to have identical
length, equal to the maximal length of undestroyed chain at
given H and γ̇ . These models give � = 1. Another approach,
developed in [4, 5], is based on a model of dense bulk drop-
like ellipsoidal aggregates, consisting of an enormous number
of particles. Depending on the supposed mechanism of the
destruction of drops under hydrodynamical shear forces, these
models give either � = 2/3 [4] or � = 1 [5].

It should be stressed that in all known models the
magnitudes of � are fixed and depend neither on the applied
field, nor on the particle volume concentration ϕ. However the
magnitudes 2/3 or 1 have never been measured in experiments,
where various intermediate values of � have been detected.
Moreover, in experiments [1, 2, 4], carried out with quite
different magnetic suspensions, increase of � with H and

ϕ from, approximately, 2/3 to, approximately, 1 has been
observed. Pronounced deviations of the function η(Mn) from
the power law have been detected in [2] when Mn was either
very small or about unity. These dependences of η and � on
H, ϕ and γ̇ are in qualitative disagreement with the known
theories. Since the magnitude of � as well as the forms of the
dependences of η on H and γ̇ reflect the internal microscopic
nature of the macroscopic rheological phenomena, the lack
of understanding of the behaviour of the functions η(H, γ̇ )

and �(H, γ̇ ) means a qualitative misunderstanding of the
physical cause of the observed phenomena. Moreover, the
condition Mn � 1 is quite typical for experiments and many
technologies with magnetic suspensions. Thus, small errors
in predictions of the exponent � lead to very bad errors in
predictions of the rheological properties of these systems.

In the work presented we suggest a model of rheological
properties of magnetic suspensions with chain-like aggregates.
Unlike the previous theories, our work takes into account the
natural statistical distribution of the chains over the number of
particles in them. It is shown that this model explains the above
discussed dependences of η and � on H and γ̇ , which cannot
be explained in the framework of the traditional models.

2. Main approximation and mathematical model

In a short paper we cannot describe all mathematical details
of the model. That is why here we will restrict ourselves to
discussion of its main physical points.
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We consider a suspension of identical magnetizable
particles typical for the magnetorheological suspensions and
inverse ferrofluids. The suspension is involved in shear flow
with gradient velocity parallel to the applied magnetic field.
We ignore the effect of interaction between particles on their
magnetic moments. According to all known photos of chains
in MRS and inverse ferrofluids, we assume that thermal
fluctuations of the chains are weak and consider the chains as
nearly straight rod-like aggregates. Next, we take into account
interactions only between nearest particles in the chains and
ignore any interactions between the chains.

In order to determine the suspension’s effective viscosity,
first, we estimate the angle θn of deviation of the n-particle
chain from the field H (see figure 1).

To this end we estimate the magnetic �m
n and

hydrodynamical �h
n torques, acting on the chains. The explicit

forms of these torques, determined in [1, 4, 8], can be presented
as

�m
n = − (n − 1) kTλ∗6 sin θ cos θ

�h
n = 1

3 γ̇ βd2 cos2 θν
(
2ν2 + 3ν + 1

)

where ν = (n−1)/2, m is the magnetic moment of the particle,
and

λ∗ = λ − ln(3λ), λ = μ0

4π

m2

d3kT
.

Here μ0 is the vacuum permeability, m is the particle
magnetic moment. Neglecting the mutual induction of the
particles, we estimated m in the same way as for a single
paramagnetic sphere placed into a field H . The magnitude
λ is the traditional dimensionless parameter of the dipole–
dipole interaction between two closely situated particles; the
logarithmic term in the expression for λ∗ appears due to the
particle fluctuations in the chain.

Equating the �m
n and �h

n , we get

tan θn = π

12

s

λ∗

(
2ν2 + 3ν + 1

)
s = γ̇

η0d3

kT
.

Then we estimate the radial, along the chain axis,
components of the magnetic Fm

n (θn) and hydrodynamical
Fh

n (θn) forces, acting on the particles in the chain. The first
one is the force of attraction between the particles; the second
force tends to destroy the chain. The result is

Fm
r = −3λ∗

kT

d

(
3 cos2 θ − 1

)

Fh
r = γ̇ βd

ν(ν + 1)

2
cos θ sin θ, β = 3πη0d.

Balancing the magnetic Fm
r and hydrodynamical Fh

r radial
forces, we obtain the following condition of chain destruction:

2 − tg2θn

tan θn
= π

2

s

λ∗
ν(ν + 1).

Analysis shows that when the number n of particles in
the chain exceeds the magnitude determined from the last
relation, the inequality Fh

r > Fm
r holds. This means that the

hydrodynamical forces destroy the chain. Thus the solution of

this equation gives us the maximal number nmax of particles in
the undestroyed chain.

Let gn denote the number of n-particle chains in unit
volume of the system. For the equilibrium suspension the
distribution function gn can be determined from the condition
of the minimum of the system free energy with respect to
gn [7]. In the framework of the approximations discussed, this
approach leads to the following Boltzmann-like form:

gn = 1

v
Xn exp (−(n − 1)w(θn)) (1)

where v is the particle volume, X is the Lagrange multiplier,
which can be determined by substituting equation (1) into the
following normalization condition:

nmax∑

n=1

ngn = ϕ

v
. (2)

The magnitude w(θn) is the dimensionless (relatively to
kT ) energy of bonds between the nearest particles in the chain.
We calculate this energy taking into account weak fluctuations
of the mutual positions of the particles near the ground state of
the doublet (pole to pole position with both magnetic moments
parallel to the field H ). Taking into account estimates obtained
in [7], we get

w(θ) = −λ∗
(
3 cos2 θ − 1

)
.

Strictly speaking, the theorem of the free energy minimum
is not valid for the system under shear flow. However, analysis
shows that when the Peclet number constructed for the particle
diameter d is not much greater than unity, this condition can
be used, at least as a first approximation. It gives a background
for estimating gn from equations (1), (2) taking into account the
chain deviation from the field under action of the shear flow.

Having estimated gn, we can consider the suspension as
an ensemble of the rod-like chains with the size distribution
gn determined. It is well known that the macroscopic
hydrodynamical stress tensor σ in a polar liquid can be
presented as σ = σ s +σ a where σ s and σ a are the symmetrical
and antisymmetrical parts of σ . By using the well-known
results for hydrodynamics of polar suspensions [8] we get

σ a = 1
2

nmax∑

n=2

�m
n (θn)gn = 1

2

nmax∑

n=2

�h
n(θn)gn. (3)

Combining equation (3) with the expressions for the
magnetic �m

n and hydrodynamical �h
n torques we estimate the

antisymmetrical part σ a of the stress tensor σ .
The symmetrical part of the tensor can be presented as [8]

σ s = η0

(

1 +
nmax∑

n=1

n(θn)ngn

)

γ̇ . (4)

The explicit form of the function n is cumbersome; that
is why we omit it here. This form can be found in [8].

Combining equations (1), (3) and (4), we estimate the
total stress tensor σ . The effective viscosity of suspension by
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Figure 1. Sketch of the chain, deviating via the flow from the applied
field. Dashed lines present the flow velocity.

Figure 2. Calculations of the reduced effective viscosity [η] as a
function of the Mason number. Lines—1: λ∗ = 15; 2: λ∗ = 8; 3:
λ∗ = 6; 4: λ∗ = 4. Particle volume concentration ϕ = 0.01.

definition is η = σ/γ̇ . One needs to note that the symmetrical
part σ s of the stress tensor has not been taken into account in
the models of [1–6]; however its magnitude is not less than
the magnitude of the antisymmetrical tensor σ a, and thus σ s

cannot be ignored.

3. Results of calculations

Figure 2 demonstrates some results of calculations of the
reduced effective viscosity [η] = (η−η0)/η0 versus the Mason
number Mn = πs/(2λ∗).

On the intermediate parts these curves are nearly linear,
which indicates the power dependence of the reduced effective

viscosity [η] on Mn. Unlike the models of [1–6] which give
either � = 2/3 or � = 1, in our calculations the exponent �

is always between 2/3 and 1. For line 1 this exponent is about
0.7, which ties up with experiments [3]. For Mn → 0 and
Mn → 1 our calculations lead to quasi-horizontal dependences
of [η] on Mn. Similar quasi-horizontal parts are seen in the
experimental curves [2] shown in figure 3 (especially well in
figure 3(b)).

These horizontal plateau-like regions cannot be explained
by the traditional models [1–6]; however the physical reasons
for their appearance are quite clear. Indeed, when the applied
magnetic field is relatively weak, the absolute majority of
the chains are short; the number n of particles in them is
much less than nmax. Thus, the weak shear flow can neither
destroy the chains nor cause them to deviate from the field.
This means that the effect of the shear rate on the suspension
effective viscosity is weak. Therefore the suspension viscosity
here is approximately the same as that for the vanishing shear
rate. The quasi-horizontal right parts of the graphs in figure 2
correspond to the situation of almost completely destroyed
chains (nmax ≈ 1) when the Mason number is relatively large.
At this state the suspension consists, mainly, of single particles;
that is why its viscosity depends on the shear rate (i.e. on
Mn) very weakly. We have just mentioned that the tendency
of the reduced viscosity to the horizontal plateau, when the
Mason number decreases, has been detected in experiments [2]
shown in figure 3. In these experiments the relation between
log([η]) and log(Mn) was almost linear for the systems with
relatively large particles which provide high magnitudes of λ∗;
the plateau-like shape of the graphs was observed for the case
of smaller particles, corresponding to low magnitudes of λ∗.

The agreement between experimental and theoretical
results, shown in figure 3, is quite reasonable, especially taking
into account that no free fitted parameters have been used in the
calculations. It should be noted that neither the plateau in the
left parts of the plots of log([η]), nor the horizontal right parts
of these plots, observed in the experiments, can be explained
in the framework of the traditional theories which lead to the
linear dependences between log([η]) and log(Mn), whereas in
our model these horizontal parts appear automatically.

Experimental [2] and theoretical dependences of the
exponent � on the applied magnetic field are shown in figure 4.

Figure 3. Theoretical (lines) and experimental (dots) results for the reduced viscosity [η] versus the Mason number. (a) λ∗ = 15, ϕ = 0.01,
experiments [1]; (b) 1, λ∗ = 1.3, 2, λ∗ = 258, ϕ = 0.18, experiments [2].
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Figure 4. Calculated (a) and experimental [2] (b) dependences of the exponent � from the dimensionless parameter λ∗ (a) and from the
applied magnetic field (b) for two different volume concentrations ϕ of the particles (figures near the plots).

Unfortunately, important data necessary for transformation of
the field H to the dimensionless parameter λ are not given
in [2]; that is why we cannot compare the theoretical and
experimental results directly. However, figure 4 shows that
the theoretical and experimental curves vary in the same
region—from approximately 2/3 to (approximately) 0.8–0.9
and slowly go up with increasing concentration ϕ. The
qualitative and quantitative agreement between the theoretical
and experimental results shows that the model is adequate at
least in its main points.

4. Conclusion

We present results of a theoretical study of the rheological
effects for magnetic suspensions placed into magnetic fields
parallel to the gradient of the suspension flow. We suppose
that these phenomena are produced by the linear chain-like
aggregates, consisting of suspended particles. Unlike the
previous works on this theme, in which the internal aggregates
in the suspension are assumed to be identical, our work takes
into account that the chains, being specific fluctuations of
density, cannot be identical and must obey a certain law of
distribution over the number of particles in the chain. Our
results show that the relation between the suspension effective
viscosity η and the Mason number Mn can be presented in
the experimentally observed power form η/η0 − 1 ∼ ϕMn−�

when the energy of magnetic interaction between particles in
the chain is high as compared with the thermal energy kT .
The known (from the literature) models of the rheological
properties of magnetic suspensions lead to fixed magnitudes
of the exponent �, equal either to 2/3 or to 1, depending on

the model. However, in experiments � varies with applied
magnetic field in the region from (approximately) 2/3 to 1
and slowly increases with the particle volume concentration.
The same behaviour of this exponent has been obtained in our
model. This allows us to conclude that the experimentally
detected rheological properties of magnetic suspensions are
produced by polydisperse ensembles of internal structures;
the chain polydispersity should be taken into account for an
understanding of the physical mechanisms of the rheological
phenomena in these systems.
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